Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Colloid Interface Sci ; 602: 732-739, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1267733

ABSTRACT

Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed. Here we demonstrate that the SARS-CoV-2 spike (S) protein interferes with the function of lipoproteins, and that this is dependent on cholesterol. In particular, the ability of HDL to exchange lipids from model cellular membranes is altered when co-incubated with the spike protein. Additionally, the S protein removes lipids and cholesterol from model membranes. We propose that the S protein affects HDL function by removing lipids from it and remodelling its composition/structure.


Subject(s)
Lipids/chemistry , Lipoproteins, HDL/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 , Humans , Spike Glycoprotein, Coronavirus/chemistry
2.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1256567

ABSTRACT

High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.


Subject(s)
COVID-19/pathology , Lipoproteins, HDL/metabolism , Sepsis/pathology , Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cholesterol/metabolism , Complement System Proteins/metabolism , Humans , Lipid Metabolism , Lipoproteins, HDL/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sepsis/complications , Sepsis/metabolism , Virus Internalization
3.
FASEB J ; 34(8): 9843-9853, 2020 08.
Article in English | MEDLINE | ID: covidwho-615453

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic presents a global challenge for managing acutely ill patients and complications from viral infection. Systemic inflammation accompanied by a "cytokine storm," hemostasis alterations and severe vasculitis have all been reported to occur with COVID-19, and emerging evidence suggests that dysregulation of lipid transport may contribute to some of these complications. Here, we aim to summarize the current understanding of the potential mechanisms related to COVID-19 dyslipidemia and propose possible adjunctive type therapeutic approaches that modulate lipids and lipoproteins. Specifically, we hypothesize that changes in the quantity and composition of high-density lipoprotein (HDL) that occurs with COVID-19 can significantly decrease the anti-inflammatory and anti-oxidative functions of HDL and could contribute to pulmonary inflammation. Furthermore, we propose that lipoproteins with oxidized phospholipids and fatty acids could lead to virus-associated organ damage via overactivation of innate immune scavenger receptors. Restoring lipoprotein function with ApoA-I raising agents or blocking relevant scavenger receptors with neutralizing antibodies could, therefore, be of value in the treatment of COVID-19. Finally, we discuss the role of omega-3 fatty acids transported by lipoproteins in generating specialized proresolving mediators and how together with anti-inflammatory drugs, they could decrease inflammation and thrombotic complications associated with COVID-19.


Subject(s)
COVID-19/complications , Dyslipidemias/virology , Lipoproteins, HDL/chemistry , Apolipoprotein A-I/chemistry , Apolipoproteins E/chemistry , COVID-19/therapy , Humans , Inflammation/virology , Phospholipids/chemistry , Receptors, Scavenger/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL